Abstract

The potential energy surface of a CO2—N2 mixture is determined by using an inversion method, together with a new collision integral correlation [J. Phys. Chem. Ref. Data 19 1179 (1990)]. With the new invert potential, the transport properties of CO2—N2 mixture are presented in a temperature range from 273.15 K to 3273.15 K at low density by employing the Chapman—Enskog scheme and the Wang Chang—Uhlenbeck—de Boer theory, consisting of a viscosity coefficient, a thermal conductivity coefficient, a binary diffusion coefficient, and a thermal diffusion factor. The accuracy of the predicted results is estimated to be 2% for viscosity, 5% for thermal conductivity, and 10% for binary diffusion coefficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.