Abstract

Fuel cells have emerged as one of the most promising energy conversion technologies to help mitigate pollution and greenhouse gas emissions. This relatively young and rapidly evolving technology offers scope for innovation in both computational modelling and design. The operation of a fuel cell depends on the optimised regulation of the flow of reactant gases, product water, heat and charged species in conjunction with reaction kinetics. These strongly coupled processes take place over a broad range of length and time scales, and in diverse structures and materials. This gives rise to a fascinating and challenging array of transport phenomena problems.This paper provides an overview of these transport phenomena in polymer electrolyte membrane fuel cells, and a critical discussion of computational strategies to resolve processes in key components: polymer electrolyte membrane, porous gas diffusion electrodes and microchannels. The integration of the various transport phenomena and components into a CFD framework is illustrated for single fuel cells and for manifolding and gas distribution in a stack. Multi-scale strategies and the coupling of CFD based models to multi-variable optimisation methods are also discussed and illustrated for catalyst layers. The paper closes with a perspective on some of the pacing items toward achieving truly functional computational design tools for fuel cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call