Abstract
AbstractSmall levels of turbulence can be present in stellar radiative interiors due to, e.g., the instability of rotational shear. In this paper we estimate turbulent transport coefficients for stably stratified rotating stellar radiation zones. Stable stratification induces strong anisotropy with a very small ratio of radial‐to‐horizontal turbulence intensities. Angular momentum is transported mainly due to the correlation between azimuthal and radial turbulent motions induced by the Coriolis force. This non‐diffusive transport known as the Λ‐effect has outward direction in radius and is much more efficient compared to the effect of radial eddy viscosity. Chemical species are transported by small radial diffusion only. This result is confirmed using direct numerical simulations combined with the test‐scalar method. As a consequence of the non‐diffusive transport of angular momentum, the estimated characteristic time of rotational coupling (≲100 Myr) between radiative core and convective envelope in young solar‐type stars is much shorter compared to the time‐scale of Lithium depletion (∼1 Gyr) (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.