Abstract
Context. With the progress of observational constraints on stellar rotation and on the angular velocity profile in stars, it is necessary to understand how angular momentum is transported in stellar interiors during their whole evolution. In this context, more highly refined dynamical stellar evolution models have been built that take into account transport mechanisms. Aims. Internal gravity waves (IGWs) excited by convective regions constitute an efficient transport mechanism over long distances in stellar radiation zones. They are one of the mechanisms that are suspected of being responsible for the quasi-flat rotation profile of the solar radiative region up to 0.2 R� . Therefore, we include them in our detailed analysis started in Paper I of the main physical processes responsible for the transport of angular momentum and chemical species in stellar radiation zones. Here, we focus on the complete interaction between differential rotation, meridional circulation, shear-induced turbulence, and IGWs during the main sequence. Methods. We improved the diagnosis tools designed in Paper I to unravel angular momentum transport and chemical mixing in rotating stars by taking into account IGWs. The star’s secular hydrodynamics is treated using projection on axisymmetric spherical harmonics and appropriate horizontal averages that allow the problem to be reduced to one dimension while preserving the nondiffusive character of angular momentum transport by the meridional circulation and IGWs. Wave excitation by convective zones is
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have