Abstract
AbstractAstrophysical accretion discs that carry a significant mass compared with their central object are subject to the effect of self‐gravity. In the context of circumstellar discs, this can, for instance, cause fragmentation of the disc gas, and—under suitable conditions—lead to the direct formation of gas‐giant planets. If one wants to study these phenomena, the disc's gravitational potential needs to be obtained by solving the Poisson equation. This requires to specify suitable boundary conditions. In the case of a spherical‐polar computational mesh, a standard multipole expansion for obtaining boundary values is not practicable. We hence compare two alternative methods for overcoming this limitation. The first method is based on a known Green's function expansion (termed “CCGF”) of the potential, while the second (termed “James' method”) uses a surface screening mass approach with a suitable discrete Green's function. We demonstrate second‐order convergence for both methods and test the weak scaling behavior when using thousands of computational cores. Overall, James' method is found superior owing to its favorable algorithmic complexity of compared with the scaling of the CCGF method.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.