Abstract

Changes induced by irradiation with 1.1 MeV protons in the transport properties and deep trap spectra of thick (>80 μm) undoped κ-Ga2O3 layers grown on sapphire are reported. Prior to irradiation, the films had a donor concentration of ∼1015 cm−3, with the two dominant donors having ionization energies of 0.25 and 0.15 eV, respectively. The main electron traps were located at Ec−0.7 eV. Deep acceptor spectra measured by capacitance-voltage profiling under illumination showed optical ionization thresholds near 2, 2.8, and 3.4 eV. The diffusion length of nonequilibrium charge carriers for ɛ-Ga2O3 was 70 ± 5 nm prior to irradiation. After irradiation with 1.1 MeV protons to a fluence of 1014 cm−2, there was total depletion of mobile charge carriers in the top 4.5 μm of the film, close to the estimated proton range. The carrier removal rate was 10–20 cm−1, a factor of 5–10 lower than in β-Ga2O3, while the concentration of deep acceptors in the lower half of the bandgap and the diffusion length showed no significant change.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.