Abstract

We investigated the interaction between soil water supply and atmospheric evaporative demand for driving the seasonal pattern of transpiration in sky-island high-elevation forest ecosystems. Sap flow measurements were collected at 10-minute intervals for five consecutive years (2013–2017) on two co-occurring subalpine conifers, i.e. limber pine (Pinus flexilis) and bristlecone pine (Pinus longaeva). Our study site is part of the Nevada Climate-ecohydrological Assessment Network (NevCAN), and is located at 3355 m a.s.l. within an undisturbed mixed-conifer stand. We found that seasonal changes in soil moisture regulated transpiration sensitivity to atmospheric conditions. Sap flow density was mainly limited by evaporative demands under non-water limiting conditions, but was influenced only by soil moisture when water availability decreased. Daily sap flow density increased with radiation and soil moisture in June and July when soil moisture was generally above 10%, but correlated only with soil moisture in August and September when soil drought occurred. Sap flow sensitivity to vapor pressure deficit and solar radiation was therefore reduced under decreasing soil moisture conditions. Transpiration peaked in mid-to-late June during both dry and wet years, with a lower peak in late summer during wet years. Normalized mean daily canopy conductance of both species declined with decreasing soil moisture (i.e., increasing soil drought). Severe soil drying (i.e., soil moisture <7% at 20 cm depth), which was rarely detected in wet summers (2013–2014) but occurred more frequently in dry summers (2015–2017), induced a minimum in crown conductance with unchanged low-level sap flow, which might potentially trigger hydraulic failure. The minimum sap flow level under severe soil drought was higher for limber pine than bristlecone pine, possibly because of wider tracheids in limber compared to bristlecone pine. Our findings provide insights into physiological mechanisms of drought-induced stress for iconic sky-island five-needle pines located at high elevation in xeric environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call