Abstract

AbstractHigh‐performance, transparent, and flexible thin‐film transistors (TFTs) with polycrystalline channels in a bottom‐gate structure are successfully fabricated at extremely low temperatures of 80, 90, and 100 °C by atomic layer deposition (ALD) in which ZnO and Al2O3 are used as channels and dielectric layers, respectively. The transistors are superior to silicon‐based TFTs in which high temperatures are necessarily involved in both preparation and postgrowth annealing. Among all devices, TFTs grown at 100 °C exhibit the best performance which can be attributed to the lowest grain boundary trap density. Additionally, the TFTs are successfully transferred to plastic substrates without any performance degradation, which shows a high mobility of 37.1 cm2V−1 s−1, a high on/off‐state current ratio of 107 at VDS = 0.1 V, a small subthreshold swing of 0.38 V dec−1, and a proper threshold voltage of 1.34 V as well as an excellent bias stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.