Abstract

Artificial defects generated by ion irradiation have been considered an efficient method to enhance the critical current density in superconducting materials. The mechanism of producing defects as flux pining centers is still an important issue since the efficiency of irradiation-induced defects in flux pinning strongly depends on their microstructures. Different types of defects have been found in heavy ion irradiation. However, there are few results that show light ion irradiation due to the target material selected, the type of light ion and energy, and the incident ion angle. Another factor is the difficulty of cross-sectional sample preparation. In this paper, a single crystal Bi2Sr2CaCu2O7-x with 11 MeV B5+ ion irradiation was observed by transmission electron microscope (TEM) from both plan and cross-sectional view.The Bi2Sr2CaCu2O7-x single crystals used for ion irradiation were prepared using the floating-zone melting method. The crystals were cleaved into thin sheets of about 20 μm thickness along the a-b plane and cut to about 2mmx2mm size.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call