Abstract

To model fracture in functionally graded materials (FGMs), the scaled boundary finite element method (SBFEM) is extended to examine the effects of fully coupled transient thermoelasticity. Previously developed SBFEM supplementary shape functions are utilized to model thermal stresses. The spatial variation of thermal and mechanical properties of FGMs are approximated by polynomial functions facilitating the semi-analytical evaluation of coefficient matrices. The dynamic stress intensity factors (SIFs) are also evaluated semi-analytically from their definitions without the need for additional post-processing. Scaled boundary polygon elements are employed to facilitate the meshing of complex crack geometries. Both isotropic and orthotropic materials with different material gradation functions are considered. To study the transient effects of thermoelasticity on fracture parameters, several numerical examples with different crack configurations and boundary conditions are considered. The current approach is validated by comparing the results of dynamic SIFs with available reference solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.