Abstract

Mixed-mode dynamic crack growth behavior along an arbitrarily smoothly varying path in functionally graded materials (FGMs) under transient thermo-mechanical loading is studied. An asymptotic analysis in conjunction with displacement potentials is used to develop transient thermo-mechanical stress fields around the propagating crack-tip. Asymptotic temperature field equations are derived for exponentially varying thermal properties, and later, these equations are used to derive transient thermo-mechanical stress fields for a curving crack in FGMs. The effect of the transient parameters (loading rate, crack-tip acceleration, and temperature change) and temperature gradient on the maximum principal stress and circumferential stress associated with the propagating crack-tip is discussed. Finally, using the minimum strain energy density criterion, the effect of temperature gradient, crack-tip speeds, and T-stress on crack growth directions is determined and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.