Abstract
Mixed-mode dynamic crack growth behavior in functionally graded materials (FGMs) under thermo-mechanical loading is studied. Asymptotic analysis in conjunction with displacement potentials has been used to develop thermo-mechanical stress fields for a mixed mode propagating crack in a FGM. The shear modulus, mass density, thermal conductivity and coefficient of thermal expansion of the FGM are assumed to vary exponentially along the gradation direction. First, asymptotic temperature fields are derived for an exponential variation of thermal conductivity and later these temperature fields are used in deriving stress fields. Using asymptotic thermo-mechanical stress fields the variation of maximum shear stress, circumferential stress and strain-energy density as a function of temperature around the crack tip are generated. Finally, utilizing the minimum strain-energy density criterion and the maximum circumferential stress criterion, the crack growth direction for various crack-tip speeds, non-homogeneity coefficients and temperature fields are determined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.