Abstract

The stress-fields near the crack tip for mixed-mode thermo-mechanical loading in functionally graded material (FGM) are developed using displacement potentials in conjugation with an asymptotic approach. The shear modulus, mass density and coefficient of thermal expansion of the FGM are assumed to vary exponentially along the gradation direction. Using insulated crack face boundary condition and steady state heat conduction assumption, the temperature field near to the crack tip is developed. By incorporating the developed temperature field equations with the displacement potentials, asymptotic thermo-mechanical stress field equations are derived. Finally, utilizing the minimum strain energy density criterion and the maximum circumferential stress criterion, the crack growth direction for various crack-tip speeds, non-homogeneity coefficients and temperature fields are determined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.