Abstract

The seasonal nature of solar panels and windmills has been a major challenge towards realizing sustainable energy. Over the years, several attempts have been made to perfect a device capable of harnessing the energy of wind and rain, titled as triboelectric and piezoelectric nano generators. Although such technologies yield promising results, a superior energy device can be achieved by addition of solar cells to wind and rain energy harvesting devices. Hybrid Nano generators are expected to be the future of commercially sustainable energy generation which are used to simultaneously harvest wind, rain, and solar energy. Though a substantial amount of work has been done with regard to such energy harvesting modules, studies that test their environmental capabilities are limited. In this study, a hybridized power panel comprising of dual-mode triboelectric nano generator and a solar cell have been tested under majorly solar, majorly windy, majorly rainy, and normal tropical conditions. Average temperature attained by the panel in such conditions have been studied through a transient thermal analysis done using Ansys Fluent. The results obtained are used to calculate thermal strain in the panel for different cases. The proposed model is an innovative way to make use of energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call