Abstract

Transient stability constrained optimal power flow (TSC-OPF) is a non-linear optimization problem which is not easy to deal directly because of its huge dimension. In order to solve the TSC-OPF problem efficiently, a relatively new optimization technique named teaching learning based optimization (TLBO) is proposed in this paper. TLBO algorithm simulates the teaching–learning phenomenon of a classroom to solve multi-dimensional, linear and nonlinear problems with appreciable efficiency. Like other nature-inspired algorithms, TLBO is also a population-based method and uses a population of solutions to proceed to the global solution. The authors have explained in detail, the basic philosophy of this method. In this paper, the authors deal with the comparison of other optimization problems with TLBO in solving TSC-OPF problem. Case studies on IEEE 30-bus system WSCC 3-generator, 9-bus system and New England 10-generator, 39-bus system indicate that the proposed TLBO approach is much more computationally efficient than the other popular methods and is promising to solve TSC-OPF problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.