Abstract

In this paper, a transient stability margin is proposed in terms of the kinetic energy of power systems in extremely unstable conditions. A unified energy-based transient stability constraint is formed for both normal and extremely unstable conditions in the proposed transient stability-constrained optimal power flow (TSCOPF) model. A divide-and-conquer approach is presented to solve TSCOPF by decomposing it into optimal power flow and transient stability constraint formation subproblems. The former is solved by an interior point method and the latter is derived by an energy sensitivity technique. Furthermore, an accuracy-based perturbation strategy is proposed to address the system over-stabilization issue, and a parallel calculation technique is implemented to speed up the TSCOPF solution. The effectiveness of the proposed approach is investigated and the results are validated using the New England 10-generator and IEEE 50-generator systems under extremely unstable conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.