Abstract

To better respond to the impact of power system-uncertain parameters on transient stability, a novel model named the parametric transient stability constrained optimal power flow (parametric TSCOPF) is proposed. It seeks the optimal control scheme of transient stability constrained optimal power flow (TSCOPF) expressed by the function of uncertain parameters in power systems. The key difficulty to solve this model lies in that the relationship between the parametric TSCOPF solution and uncertain parameters is implicit, which is hard to derive generally. To this end, this paper approximates the optimal solution of parametric TSCOPF by polynomial expressions of uncertain parameters based on the stochastic collocation method. First, the parametric TSCOPF model includes both uncertain parameters and transient stability constraints, in which the transient stability constraint is constructed as a set of polynomial expressions using the SCM. Then, to derive the relationship between the parametric TSCOPF solution and uncertain parameters, the SCM is applied to the parametric Karush–Kuhn–Tucker (KKT) conditions of the parametric TSCOPF model, so that the optimal solution of the parametric TSCOPF is approximated by using polynomial expressions with respect to uncertain parameters. The proposed parametric TSCOPF model has been tested on a 3-machine, 9-bus system, and the IEEE 145-bus system, which verifies the effectiveness of the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call