Abstract

We present the development of a set of electron and hole quantum transport equations for barrier devices with dilute magnetic semiconductor (DMS) regions. The equations are developed from the time dependent equation of motion of the density matrix equation in the coordinate representation, leading to both the transient spin Wigner equations and the 'classical' spin drift and diffusion equations for high 'g' factor DMS materials. The role of DMS layers is illustrated for two structures; one where the DMS layer is confined to the first barrier, and another with DMS emitter and collector barriers. In each case we obtain the spinup and spindown carrier and current distributions, from self-consistent solutions to the transient spin dependent Wigner equation. Negative differential conductance as well as the significant unequal spinup and spin down charge distributions are obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call