Abstract

This paper presents of development of quantum transport equations for barrier devices with both electron and hole transport in dilute magnetic semiconductor (DMS) structures. The equations are developed from the time dependent equation of motion of the density matrix equation in the coordinate representation, from which both the spin drift and diffusion and transient Wigner equations are obtained, for a system in which high 'g' factor materials result in significant spin-splitting of the valence and conduction bands. Then for a structure in which the DMS layer is confined to the first barrier solutions to the coupled Poisson's and spin dependent Wigner equations yield the IV and carrier distributions. Negative differential conductance as well as the significant unequal spinup and spin down charge distributions are obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call