Abstract
Switching on generic interactions e.g. the Coulomb potential or other long ranged spherically symmetric repulsive interactions between monomers of bead-spring model of a semi-flexible polymer induce instabilities in a semiflexible polymer chain to form transient helical structures. Our proposed mechanism could explain the spontaneous emergence of helical order in stiff (bio-) polymers as a chain gets charged from a neutral state. But since the obtained helical structures dissolve away with time, hydrogen bonding (or other additional mechanisms), would be required to form stabilized helical structures as observed in nature (such as in biological macro-molecules). The emergence of the helix is independent of the molecular details of the monomer constituent. The key factors which control the emergence of the helical structure is the persistence length and the charge density. We have avoided using torsional potentials to obtain the transient helical structures. Moreover, we can drive the semiflexible polymer to form helices in a recurring manner by periodically increasing and decreasing the effective charge of the monomers. If the two polymer ends are tethered to two surfaces separated by a distance equal to the contour length of the polymeric chain, which could be in the range 10 nm–μ, the life time of the helical structures formed is increased.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.