Abstract

A growing list of proteins, including the β-sheet-rich SH3 domain, is known to transiently populate a compact α-helical intermediate before settling into the native structure. Examples have been discovered in cryogenic solvent as well as by pressure jumps. Earlier studies of λ repressor mutants showed that transient states with excess helix are robust in an all-α protein. Here we extend a previous study of src SH3 domain to two new SH3 sequences, phosphatidylinositol 3-kinase (PI3K) and a Fyn mutant, to see how robust such helix-rich transients are to sequence variations in this β-sheet fold. We quantify helical structure by circular dichroism (CD), protein compactness by small-angle X-ray scattering (SAXS), and transient helical populations by cryo-stopped-flow CD. Our results show that transient compact helix-rich intermediates are easily accessible on the folding landscape of different SH3 domains. In molecular dynamics simulations, force field errors are often blamed for transient non-native structure. We suggest that experimental examples of very fast α-rich transient misfolding could become a more subtle test for further force field improvements than observation of the native state alone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.