Abstract
The startup of electrophoretic motion in a suspension of spherical colloidal particles, which may be charged with constant zeta potential or constant surface charge density, due to the sudden application of an electric field is analytically examined. The unsteady modified Stokes equation governing the fluid velocity field is solved with unit cell models. Explicit formulas for the transient electrophoretic velocity of the particle in a cell in the Laplace transforms are obtained as functions of relevant parameters. The transient electrophoretic mobility is a monotonic decreasing function of the particle-to-fluid density ratio and in general a decreasing function of the particle volume fraction, but it increases and decreases with a raise in the ratio of the particle radius to the Debye length for the particles with constant zeta potential and constant surface charge density, respectively. On the other hand, the relaxation time in the growth of the electrophoretic mobility increases substantially with an increase in the particle-to-fluid density ratio and with a decrease in the particle volume fraction but is not a sensitive function of the ratio of the particle radius to the Debye length. For specified values of the particle volume fraction and particle-to-fluid density ratio in a suspension, the relaxation times in the growth of the particle mobility in transient electrophoresis and transient sedimentation are equivalent.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have