Abstract
In this paper the electrophoretic mobility and the electrical conductivity of concentrated suspensions of spherical colloidal particles have been numerically studied under arbitrary conditions including zeta potential, particle volume fraction, double-layer thickness (overlapping of double layers is allowed), surface conductance by a dynamic Stern layer model (DSL), and ionic properties of the solution. We present an extensive set of numerical data of both the electrophoretic mobility and the electrical conductivity versus zeta potential and particle volume fraction, for different electrolyte concentrations. The treatment is based on the use of a cell model to account for hydrodynamic and electrical interactions between particles. Other theoretical approaches have also been considered for comparison. Furthermore, the study includes the possibility of adsorption and lateral motion of ions in the inner region of the double layers (DSL model), according to the theory developed by C. S. Mangelsdorf and L. R. White ( J. Chem. Soc. Faraday Trans. 86, 2859 (1990)). The results show that the correct limiting cases of low zeta potentials and thin double layers for dilute suspensions are fulfilled by our conductivity formula. Moreover, the presence of a DSL causes very important changes, even dramatic, on the values of both the electrophoretic mobility and the electrical conductivity for a great range of volume fractions and zeta potentials, specially when double layers of adjacent cells overlap, in comparison with the standard case (no Stern layer present). It can be concluded that in general the presence of a dynamic Stern layer causes the electrophoretic mobility to decrease and the electrical conductivity to increase in comparison with the standard case for every volume fraction, zeta potential, and double-layer thickness.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have