Abstract

Our recent report documented that the rice germin-like protein1 (OsGLP1), being a cell wall-associated protein involves in disease resistance in rice and possesses superoxide dismutase (SOD) activity as recognized by heterologous expression in tobacco. In the present study, the transgenic tobacco plants were analyzed further to decipher the detailed physiological and biochemical functions of the OsGLP1 and its associated SOD activity. The transgenic tobacco lines expressing SOD-active OsGLP1 showed tolerance against biotic and abiotic stresses mitigated by hyper-accumulating H2O2 upon infection by fungal pathogen (Fusarium solani) and treatment to chemical oxidizing agent (ammonium persulfate), respectively. Histological staining revealed enhanced cross-linking of the cell wall components in the stem tissues of the transgenic plants. Fourier transform infrared spectroscopy (FTIR) analysis of the biopolymer from the stem tissues of the transgenic and untransformed plants revealed differential banding pattern of the spectra corresponding to various functional groups. Our findings demonstrate that the OsGLP1 with its inherent SOD activity is responsible for hyper-accumulation of H2O2 and reinforcement of the cell wall components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call