Abstract

Introduction of the FeSOD gene enhanced the stability of the photosynthetic apparatus of plants to the action of oxidative stress caused by UV irradiation. The expression of Arabidopsis thaliana FeSOD gene, targeting the enzyme in chloroplasts due to a signal sequence, leaded to significant changes in ultrastructure of cell subcompartments of tobacco and tomato leaves. The activity of superoxide dismutase in leaves of transgenic tomato plants exceeded the value of activity of this enzyme of control plants. Transgenic tobacco plants showed increasing in SOD activity compared with control non-transgenic tobacco. The activity of AP in the leaves of transgenic tobacco and tomato plants was similar with that of control non-transgenic plants, but activity of one accession of transgenic tomato, which is also characterized by high values of SOD activity, exceeded the value of control plant. Differences in ultrastructural organization of chloroplasts in the cells of transgenic and control tobacco and tomato plants have been manifested in a strong enlargement in the size of plastoglobuli. These distinctions were evident especially in the cells of the leaf parenchyma of transgenic tomato as well as transgenic tobacco. Also, a quantity of starch grains in the plastids of guard cells was increased. Chloroplasts in the cells of leaf parenchyma in transgenic plants contained less a starch grains than in wild-type plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call