Abstract

PurposeColorectal cancer (CRC) is recognized as the third most common form of malignancy, with the liver frequently serving as the main site for metastasis. Anoikis resistance (AR) is critical in colorectal cancer liver metastases (CRLM). Fatty acid synthase (FASN), essential in lipid synthesis, mediates AR in many cancers. The present research examines the function of FASN in ERK1/2-mediated AR in CRLM and evaluates its therapeutic potential. MethodsWe performed scratch and migration experiment to evaluate the migration capacity of the LoVo cells. Flow cytometry was employed to identify cell apoptosis. The levels of FASN, p-ERK1/2, and proteins related to apoptosis was analyzed by Western blot. The mRNA level of FASN was determined by q-PCR after FASN silencing. In addition, we used an intrasplenic liver metastasis model of nude to assess the effect of FASN on CRLM. ResultsIn vitro experiments showed that after FASN silencing, the cell apoptosis rate was increased, migration capability was notably decreased, the expression of p-ERK1/2, the proteins related to anti-apoptotic were significantly decreased, and the proteins related to apoptosis were significantly increased. In vivo experiments showed that AR significantly increased the number of liver metastatic foci, whereas FASN silencing significantly inhibited CRLM. ConclusionThese results suggest that FASN silencing suppressed AR through the ERK 1/2 pathway, which in turn suppressed CRLM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.