Abstract

We have increased the lysine content in the seeds of canola and soybean plants by circumventing the normal feedback regulation of two enzymes of the biosynthetic pathway, aspartokinase (AK) and dihydrodipicolinic acid synthase (DHDPS). Lysine-feedback-insensitive bacterial DHDPS and AK enzymes encoded by the Corynebacterium dapA gene and a mutant E. coli lysC gene, respectively, were linked to a chloroplast transit peptide and expressed from a seed-specific promoter in transgenic canola and soybean seeds. Expression of Corynebacterium DHDPS resulted in more than a 100-fold increase in the accumulation of free lysine in the seeds of canola; total seed lysine content approximately doubled. Expression of Corynebacterium DHDPS plus lysine-insensitive E. coli AK in soybean transformants similarly caused several hundred-fold increases in free lysine and increased total sed lysine content by as much as 5-fold. Accumulation of alpha-amino adipic acid (AA) in canola and saccharopine in soybean, which are intermediates in lysine catabolism, was also observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.