Abstract
Screening diabetic retinopathy (DR) for timely management can reduce global blindness. Many existing DR screening programs worldwide are non-digital, standalone, and deployed with grading retinal photographs by trained personnel. To integrate the screening programs, with or without artificial intelligence (AI), into hospital information systems to improve their effectiveness, the non-digital workflow must be transformed into digital. We developed a cloud-based digital platform and implemented it in an existing DR screening program. We conducted the following processes in the platform for prospective DR screening at a community hospital: capturing patients' retinal photographs, uploading them for grading by AI or trained personnel on alternate weeks for 32weeks, and referring vision-threatening DR to a referral center. At this center, the platform was applied for the assessment of potential missed referrals via remote over-reading by a retinal specialist and tracking referrals. Implementational outcomes, such as detecting positive cases, agreement between AI and over-reading, and referral adherence were assessed. Of 645 patients screened by AI, 201 (31.2%) were referrals, 129 (64.2%) of which were true positives agreeable by over-reading; 115 of these true positives (89.1%) had referral adherence. False negatives judged by over-reading were 1.1% (5/444). Of 730 patients in manual screening, 175 (24.0%) were potential referrals, 11 (6.3%) of which were referred at the point-of-screening; eight of these (72.7%) adhered to referral. The remaining 164 cases were appointed for later examination by a visiting general ophthalmologist; 11 of these 116 examined (9.5%) were referred for non-DR-related eye conditions with 81.8% (9/11) referral adherence. No system failure or interruption was found. The digital platform can be practically integrated into the existing non-digital DR screening programs to implement AI and monitor previously unknown but important indicators, such as referral adherence, to improve the effectiveness of the programs. ClinicalTrials.gov. (registration number: NCT05166122).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have