Abstract

We demonstrate the coherent coupling and the resulting transfer of phase information between microwave and optical fields in a single nitrogen vacancy center in diamond. The relative phase of two microwave fields is encoded in a coherent superposition spin state. This phase information is then retrieved with a pair of optical fields. A related process is also used for the transfer of phase information from optical to microwave fields. These studies show the essential role of dark states, including optical pumping into the dark states, in the coherent microwave-optical coupling and open the door to the full quantum state transfer between microwave and optical fields in a solid-state spin ensemble.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.