Abstract
The nitrogen vacancy (NV) center in diamond is promising as an electron spin qubit due to its long-lived coherence and optical addressability. The ground state is a spin triplet with two levels $({m}_{s}=\ifmmode\pm\else\textpm\fi{}1)$ degenerate at zero magnetic field. Polarization-selective microwave excitation is an attractive method to address the spin transitions independently since this allows operation down to zero magnetic field. Using a resonator designed to produce circularly polarized microwaves, we have investigated the polarization selection rules of the NV center. We first apply this technique to NV ensembles in [100]- and [111]-oriented samples. Next, we demonstrate an imaging technique, based on optical polarization dependence, which allows rapid identification of the orientations of many single NV centers. Finally, we test the microwave polarization selection rules of individual NV centers of known orientation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.