Abstract
Diffractively coupled nanoparticle arrays are promising candidates for helping to flatten many photonic devices such as lasers, lenses, and metrology instruments. Their performance, however, is directly linked with the size of the metasurfaces, limiting their applicability in nanophotonic applications. Here, we dramatically reduce array sizes of high-Q factor metasurfaces by utilizing strongly dispersive media. The effect is demonstrated by theoretically and numerically studying periodic arrays of plasmonic nanoparticles embedded inside Bragg-reflector waveguides. We demonstrate array dimensions reduction up to two orders of magnitude while still achieving ultrahigh-Q factors in excess of 104. Published by the American Physical Society 2024
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.