Abstract

Periodic hexagonal spherical nanoparticle arrays are fabricated by a sacrificial colloidal monolayer template route by chemical deposition and further physical deposition. The regular network‐structured arrays are first templated by colloidal monolayers and then they are changed to novel periodic spherical nanoparticle arrays by further sputtering deposition due to multiple direction deposition and shadow effect between adjacent nanoparticles. The nanogaps between two adjacent spherical nanoparticles can be well tuned by controlling deposition time. Such periodic nanoparticle arrays with gold coatings demonstrate a very stable and high sensitive surface‐enhanced Raman scattering spectroscopy (SERS) performance. The periodic nanoparticle arrays with 10 nm gaps display much stronger SERS enhancement due to electromagnetic coupling. The chemically modified nanoparticle arrays show good hydrophobicity, which shorten process of detecting probe molecules using them as SERS‐active substrates by localized concentration of droplet evaporation and a low detection limit of 10−12 m R6G can be achieved without solution wasting in a short time. The hydrophobic substrate offers a simple, convenient, and economical method to examine SERS performance by rapid concentration of solution on it and it is highly helpful to improve its practical applications in portable Raman detecting devices to detect organic molecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call