Abstract
In the presence of strong electronic interactions, a partially filled Chern band may stabilize a fractional Chern insulator (FCI) state, the zero-field analog of the fractional quantum Hall phase. While FCIs have long been hypothesized, feasible solid-state realizations only recently emerged, largely due to the rise of moiré materials. In these systems, the quantum geometry of the electronic bands plays a critical role in stabilizing the FCI in the presence of competing correlated phases. In the limit of "ideal" quantum geometry, where the quantum geometry is identical to that of Landau levels, this role is well understood. However, in more realistic scenarios only empiric numerical evidence exists, accentuating the need for a clear understanding of the mechanism by which the FCI deteriorates, moving further away from these ideal conditions. We introduce and analyze an anisotropic model of a |C|=1 Chern insulator, whereupon partial filling of its bands, an FCI phase is stabilized over a certain parameter regime. We incorporate strong electronic interaction analytically by employing a coupled-wires approach, studying the FCI stability and its relation to the quantum metric. We identify an unusual anti-FCI phase benefiting from nonideal geometry, generically subdominant to the FCI. However, its presence hinders the formation of FCI in favor of other competitive phases at fractional fillings, such as the charge density wave. Though quite peculiar, this anti-FCI phase may have already been observed in experiments at high magnetic fields. This establishes a direct link between quantum geometry and FCI stability in a tractable model far from any ideal band conditions, and illuminates a unique mechanism of FCI deterioration.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have