Abstract
Lettuce is sensitive to high temperature, and exogenous spermidine can improve heat tolerance in lettuce, but its intrinsic mechanism is still unclear. We analyzed the effects of exogenous spermidine on the leaf physiological metabolism, transcriptome and metabolome of lettuce seedlings under high-temperature stress using the heat-sensitive lettuce variety 'Beisansheng No. 3' as the material. The results showed that exogenous spermidine increased the total fresh weight, total dry weight, root length, chlorophyll content and total flavonoid content, increased the activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), and decreased malondialdehyde (MDA) content in lettuce under high temperature stress. Transcriptome and metabolome analyses revealed 818 differentially expressed genes (DEGs) and 393 metabolites between water spray and spermidine spray treatments under high temperature stress, and 75 genes from 13 transcription factors (TF) families were included in the DEGs. The Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis of DEG contains pathways for plant-pathogen interactions, photosynthesis-antennal proteins, mitogen-activated protein kinase (MAPK) signaling pathway and flavonoid biosynthesis. A total of 19 genes related to flavonoid synthesis were detected. Most of these 19 DEGs were down-regulated under high temperature stress and up-regulated after spermidine application, which may be responsible for the increase in total flavonoid content. We provide a possible source and conjecture for exploring the mechanism of exogenous spermidine-mediated heat tolerance in lettuce.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.