Abstract

Tomato Verticillium wilt is a soil-borne vascular disease caused by the necrotrophic fungus Verticillium dahliae. Although some understanding of plant defense mechanisms against V. dahliae infection has been gained for incompatible interactions, including identification of inducible resistant genes and defense signaling pathways, the genes and signaling pathways involved in the compatible interaction remain unclear. To investigate the molecular basis of the compatible interaction between tomato and V. dahliae, transcriptomes of V. dahliae infected tomatoes were compared to those of a control group. A total of approximately 25 million high-quality reads were generated by means of the RNA sequencing (RNA-seq) method. The sequence reads were aligned to the tomato reference genome and analyzed to measure gene expression levels, and to identify alternative splicing events. Comparative analysis between the two samples revealed 1,953 significantly differentially expressed genes (DEGs), including 1,281 up-regulated and 672 down-regulated genes. The RNA-Seq output was confirmed using RT-qPCR for 10 selected genes. The Nr, Swiss-Prot, Gene Ontology (GO), Clusters of Orthologous Groups (COG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases were used to annotate DEG functions. Of the 1,953 DEGs identified, 1,953, 1,579, 1,739, 862, and 380 were assigned by Nr, Swiss-Prot, GO, COG, and KEGG, respectively. The important functional groups identified via GO and COG enrichment were those responsible for fundamental biological regulation, secondary metabolism, and signal transduction. Of DEGs assigned to 87 KEGG pathways, most were associated with phenylpropanoid metabolism and plant–pathogen interaction pathways. Most of the DEGs involved in these two pathways were up-regulated, and may be involved in regulating the tomato-V. dahliae compatible interaction. The results will help to identify key susceptible genes and contribute to a better understanding of the mechanisms of tomato susceptible response to V. dahliae.

Highlights

  • Verticillium wilt is a serious vascular disease caused by the soil-borne fungus Verticillium dahliae, which is able to infect more than 200 plant species, including numerous economically important food crops (Klosterman et al, 2009)

  • The results revealed the transcriptome of tomato roots infected by V. dahliae and a large number of differentially expressed genes (DEGs), and have the potential to assist in the development of new disease control strategies

  • Sequence Analyzing and Aligning to the Reference Genome To obtain a transcriptome profile of Micro-Tom tomato response to V. dahliae, two cDNA samples were extracted at 2 dpi from the roots of V. dahliae-inoculated tomatoes and sterilized water-inoculated tomatoes

Read more

Summary

Introduction

Verticillium wilt is a serious vascular disease caused by the soil-borne fungus Verticillium dahliae, which is able to infect more than 200 plant species, including numerous economically important food crops (Klosterman et al, 2009). The infection of plants results from penetration of young roots by V. dahliae via wounds or cracks that occur at the sites of lateral roots (Fradin and Thomma, 2006; Klosterman et al, 2009). Symptoms include stunted growth and extensive defoliation, which can be severe enough to lead to death of the plant (Fradin and Thomma, 2006). Plants have evolved an intricate and multilayered defense system to combat this infection, including hypersensitive responses and phenotypes resistant to infection. Following infection plant responses consist of three steps: the pathogen recognition, signal transduction, and the defense response itself, which involves many genes expressing defense-related proteins, which regulate complex signaling pathways (Jones and Dangl, 2006)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call