Abstract

In this study, RNA-seq was employed for transcriptome sequencing at four developmental stages of normal (L) and embryogenic (X) Festuca glauca ‘Elijah Blue’ inflorescences to analyze and identify the metabolic pathways and regulatory genes associated with inflorescence embryogenesis, thereby facilitating the understanding of the molecular mechanisms of inflorescence embryogenesis in Festuca glauca. The results revealed a total of 50,733 differentially expressed genes (DEGs) between the control (L) and embryogenic (X) samples at different developmental stages. Among them, 19,640 (38.71 %) were upregulated and 31,093 (61.29 %) were downregulated. A total of 2585 DEGs were expressed in both stage 1 (L1-vs-X1) and stage 4 (L4-vs-X4). Gene Ontology (GO) analysis revealed that the DEGs in these stages were mainly enriched in processes related to photosynthetic membranes, chloroplasts, activity of DNA-binding transcription factors, components of ribosomal structure, reactions involving oxidized compounds, and photosynthesis; while Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the DEGs in these stages were mainly enriched in pathways such as plant-pathogen interactions, plant hormone signal transduction, phenylpropanoid biosynthesis, ribosomes, and galactose metabolism. The top families containing differentially expressed transcription factors (DETFs) in these stages included ERF, bHLH, MYB-related, NAC, and WRKY. A total of 39 and 29 DETFs associated with embryogenesis were identified in the L1-vs-X1 and L4-vs-X4 stages, respectively. Additionally, 79 and 110 embryogenesis-related genes were identified in the plant hormone signal transduction metabolic pathway in the L1-vs-X1 and L4-vs-X4 stages, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.