Abstract

Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are two of the most widely used perfluoroalkyl acids (PFAAs). Because of their strong persistence, they have become widely distributed throughout the environment and human bodies. PFOA and PFOS are suspected to disrupt the endocrine system based upon many in vivo studies, but the underlying mechanisms are currently unclear. In this study, we investigated the endocrine-related effects of PFOA and PFOS using in vitro estrogen receptor (ER) and androgen receptor (AR) transactivation assays and steroidogenesis assay. The results showed that PFOA and PFOS exhibited weak antagonistic ER transactivation but did not exhibit agonistic ER or AR transactivation. In the steroidogenesis assay, PFOA and PFOS induced 17β-estradiol (E2) level and reduced testosterone level, which would be caused by the induction of aromatase activity. The qPCR analysis of genes involved in steroidogenesis indicates that PFOA and PFOS associate with sex hormone synthesis by the transcriptional induction of two genes, cyp19 and 3β-hsd2. Moreover, the transcriptional induction of cyp11b2 by PFOS suggests that this chemical may underlie the disruption of several physiological functions related to aldosterone. The results of the current study suggest that PFOA and PFOS are potential endocrine disrupting chemicals (EDCs) and provide information for further studies on the molecular events that initiate the adverse endocrine effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.