Abstract

Transaminative metabolism of L-cysteine was investigated using homogenates of guinea pig liver and kidney. L-Cysteine was transaminated in the presence of 2-oxoglutarate and the homogenate of either liver or kidney. S-(2-Hydroxy-2-carboxyethylthio)cysteine (HCETC) (3-mercaptolactate-cysteine disulfide) was formed by liver homogenate, but the amount was very small. On the other hand, a relatively large amount of HCETC was formed in the presence of kidney homogenate. Transamination between 3-mercaptopyruvate and certain amino acids was catalyzed actively by both liver and kidney homogenates in the presence of L-glutamate. However, more half-cysteine was formed by liver than kidney, and more HCETC was produced by kidney than liver. L-Glutamate was the most potent amino donor, and L-aspartate strongly inhibited the reaction. Results indicate that L-cysteine can be transaminated both in liver and kidney of the guinea pig, and that kidney is more active than liver. 2-Oxoglutarate is the most active 2-oxo acid for cysteine transamination. Oxaloacetate (and aspartate in the reverse reaction) is inhibitory to the reaction. These results are in agreement with the previous conclusion that cysteine aminotransferase is identical with aspartate aminotransferase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.