Abstract

BackgroundThe Gram-positive facultative methylotrophic bacterium Bacillus methanolicus uses the sedoheptulose-1,7-bisphosphatase (SBPase) variant of the ribulose monophosphate (RuMP) cycle for growth on the C1 carbon source methanol. Previous genome sequencing of the physiologically different B. methanolicus wild-type strains MGA3 and PB1 has unraveled all putative RuMP cycle genes and later, several of the RuMP cycle enzymes of MGA3 have been biochemically characterized. In this study, the focus was on the characterization of the transaldolase (Ta) and its possible role in the RuMP cycle in B. methanolicus.ResultsThe Ta genes of B. methanolicus MGA3 and PB1 were recombinantly expressed in Escherichia coli, and the gene products were purified and characterized. The PB1 Ta protein was found to be active as a homodimer with a molecular weight of 54 kDa and displayed KM of 0.74 mM and Vmax of 16.3 U/mg using Fructose-6 phosphate as the substrate. In contrast, the MGA3 Ta gene, which encodes a truncated Ta protein lacking 80 amino acids at the N-terminus, showed no Ta activity. Seven different mutant genes expressing various full-length MGA3 Ta proteins were constructed and all gene products displayed Ta activities. Moreover, MGA3 cells displayed Ta activities similar as PB1 cells in crude extracts.ConclusionsWhile it is well established that B. methanolicus can use the SBPase variant of the RuMP cycle this study indicates that B. methanolicus possesses Ta activity and may also operate the Ta variant of the RuMP.

Highlights

  • The Gram-positive facultative methylotrophic bacterium Bacillus methanolicus uses the sedoheptulose-1,7-bisphosphatase (SBPase) variant of the ribulose monophosphate (RuMP) cycle for growth on the C1 carbon source methanol

  • The genomes from B. methanolicus PB1 and MGA3 encode transaldolase Inspection of the genome sequences of B. methanolicus PB1 and MGA3 revealed that each strain possesses a single chromosomally encoded transaldolase, while no Ta gene was found on the plasmids pBM20 and pBM19

  • Closer inspection of the gene sequences revealed several single nucleotide polymorphisms (SNPs) and suggested that the putative translation initiation codon ATG present in PB1 is mutated to ATA in MGA3 (Fig. 3)

Read more

Summary

Introduction

The Gram-positive facultative methylotrophic bacterium Bacillus methanolicus uses the sedoheptulose-1,7-bisphosphatase (SBPase) variant of the ribulose monophosphate (RuMP) cycle for growth on the C1 carbon source methanol. Genome sequencing of the two physiologically different B. methanolicus wild-type strains MGA3 and PB1 that showed considerable differences with respect to growth, amino acid production, and respiration profiles in fed-batch methanol cultivations [23] provided genetic insight into all methylotrophic pathways of this species ([23]; Irla et al 2014). Both strains carry the methylotrophy plasmids pBM19 and pBM20, respectively, and MGA3 in addition carry the natural and cryptic plasmid pBM69. B. methanolicus possesses enzymes for the sedoheptulose-1,7-

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call