Abstract

Considering different propulsion systems of unman- ned surface vehicles (USVs), it is necessary to design corresponding vessel motion controllers according to propulsion characteristics. This article devotes to solve the problem of trajectory tracking control for vector propulsion USV. By analyzing actuator distribution of vector propulsion, the vessel can be regarded as an incomplete underactuated system, and the control inputs adopt thruster speed and propulsion angle which are closer to reality. On this basis, the guidance trajectory and adaptive sliding mode controller based on virtual control point theory are proposed to realize trajectory tracking control of vector propulsion USV with system uncertainty and external disturbance. The designed guidance trajectory can guide the vessel to return to the desired trajectory when position error is large, and the system stability is illustrated by stability proof. Then in the design process of the controller, to mitigate chattering for sliding mode, a continuously derivable approximate saturation function is used instead of the signum function. Next, by zero-dynamics stability analysis, the position of the dynamic virtual control point is obtained with the relationship between the virtual control point and vessel speed. Finally, numerical simulations are carried out with two kinds of trajectory tracking scenarios to verify the correctness and feasibility of the proposed control strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call