Abstract

The Heisenberg uncertainty principle suggests that it is impossible to determine the trajectory of a quantum particle in the same way as a classical particle. However, we may still yield insight into novel behavior of photons based on the average photon trajectories (APTs). Here we explore the APTs of photons carrying spin angular momentum (SAM) and/or orbital angular momentum (OAM) under the paraxial condition. We define the helicity and differential helicity for unveiling the three-dimensional spiral structures of the APTs of photons. We clarify the novel behaviors of the APTs caused by the SAM and OAM as well as the SAM-OAM coupling. The APT concept is very helpful for profoundly understanding the motion of trapped particles and for elucidating other physical systems. Due to the presence of the helical path caused by the SAM and/or the OAM, the actual traveling distance of the photons might be much longer than the geometric distance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.