Abstract
Abstract We theoretically studied the dynamic properties of the skyrmion driven by electromagnetic (EM) waves with spin angular momentum (SAM) and orbital angular momentum (OAM) using micromagnetic simulations. First, the guiding centers of the skyrmion driven by EM waves with SAM, i.e., left-handed and right-handed circularly polarized EM waves, present circular trajectories, while present elliptical trajectories under linear EM waves driving due to the superposition of oppositely polarized wave components. Second, the trajectories of the skyrmion driven by EM waves with OAM demonstrate similar behavior to that driven by linearly polarized EM waves. Because the wave vector intensity varies with the phase for both linearly polarized EM waves and EM waves with OAM, the angular momentum is transferred to the skyrmion non-uniformly, while the angular momentum is transferred to the skyrmion uniformly for left-handed and right-handed circularly polarized EM driving. Third, the dynamic properties of the skyrmion driven by EM waves with both SAM and OAM are investigated. It is found that the dynamic trajectories exhibit more complex behavior due to the contributions or competition of SAM and OAM. We investigate the characteristics of intrinsic gyration modes and frequency-dependent trajectories. Our research may provide insight into the dynamic properties of skyrmion manipulated by EM waves with SAM or OAM and provide a method for controlling skyrmion in spintronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.