Abstract
It is one of the topics that have been studied extensively on maximum power point tracking (MPPT) recently. Traditional or soft computing methods are used for MPPT. Since soft computing approaches are more effective than traditional approaches, studies on MPPT have shifted in this direction. This study aims comparison of performance of seven meta-heuristic training algorithms in the neuro-fuzzy training for MPPT. The meta-heuristic training algorithms used are particle swarm optimization (PSO), harmony search (HS), cuckoo search (CS), artificial bee colony (ABC) algorithm, bee algorithm (BA), differential evolution (DE) and flower pollination algorithm (FPA). The antecedent and conclusion parameters of neuro-fuzzy are determined by these algorithms. The data of a 250 W photovoltaic (PV) is used in the applications. For effective MPPT, different neuro-fuzzy structures, different membership functions and different control parameter values are evaluated in detail. Related training algorithms are compared in terms of solution quality and convergence speed. The strengths and weaknesses of these algorithms are revealed. It is seen that the type and number of membership function, colony size, number of generations affect the solution quality and convergence speed of the training algorithms. As a result, it has been observed that CS and ABC algorithm are more effective than other algorithms in terms of solution quality and convergence in solving the related problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.