Abstract

The ultrasonic machining (USM) process has been analyzed in the present study to obtain the desired process responses by optimizing machining parameters using cuckoo search (CS) and chicken swarm optimization (CSO), two powerful nature-inspired, population and swarm-intelligence-based metaheuristic algorithms. The CS and CSO algorithms have been compared with other non-conventional optimization techniques in terms of optimal results, convergence, accuracy, and computational time. It is found that CS and CSO algorithms predict superior single and multi-objective optimization results than gravitational search algorithms (GSAs), genetic algorithms (GAs), particle swarm optimization (PSO) algorithms, ant colony optimization (ACO) algorithms and artificial bee colony (ABC) algorithms, and gives exactly the same results as predicted by the fireworks algorithm (FWA). The CS algorithm outperforms all other algorithms namely CSO, FWA, GSA, GA, PSO, ACO, and ABC algorithms in terms of mean computational time, whereas, the CSO algorithm outperforms all other algorithms except for the CS and GSA algorithms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call