Abstract

A resource-constrained project scheduling problem (RCPSP) is one of the most famous intractable NP-hard problems in the operational research area in terms of its practical value and research significance. To effectively solve the RCPSP, we propose a hybrid approach by integrating artificial bee colony (ABC) and particle swarm optimization (PSO) algorithms. Moreover, a novel structure of ABC-PSO is devised based on embedded ABC-PSO (EABC-PSO) and sequential ABC-PSO (SABC-PSO) strategies. The EABC-PSO strategy mainly applies the PSO algorithm to update the process of the ABC algorithm while the SABC-PSO strategy demonstrates an approach in which computational results obtained from the ABC algorithm are further improved based on the PSO algorithm. In both strategies, bees in the ABC process are entitled to learning capacity from the best local and global solutions in terms of the PSO concept. Subsequently, the updates of solutions are premeditated with crossover and insert operators together with double justification methods. Computational results obtained from the tests on benchmark sets show that the proposed ABC-PSO algorithm is efficient in solving RCPSP problems, demonstrating clear advantages over the pure ABC algorithm, the PSO algorithm, and a number of listed heuristics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call