Abstract
Herein we report the influence of a ZrO2 underlayer on the PEC (photoelectrochemical) behavior of hematite nanorod photoanodes for efficient solar water splitting. Particular attention was given to the cathodic shift in onset potential and photocurrent enhancement. Akaganite (β-FeOOH) nanorods were grown on ZrO2-coated FTO (fluorine-doped tin oxide) substrates. Sintering at 800 °C transformed akaganite to the hematite (α-Fe2O3) phase and induced Sn diffusion into the crystal structure of hematite nanorods from the FTO substrates and surface migration, shallow doping of Zr atoms from the ZrO2 underlayer. The ZrO2 underlayer-treated photoanode showed better water oxidation performance compared to the pristine (α-Fe2O3) photoanode. A cathodic shift in the onset potential and photocurrent enhancement was achieved by surface passivation and shallow doping of Zr from the ZrO2 underlayer, along with Sn doping from the FTO substrate to the crystal lattice of hematite nanorods. The Zr based hematite nanorod photoanode achieved 1 mA/cm(2) at 1.23 VRHE with a low turn-on voltage of 0.80 VRHE. Sn doping and Zr passivation, as well as shallow doping, were confirmed by XPS, Iph, and M-S plot analyses. Electrochemical impedance spectroscopy revealed that the presence of a ZrO2 underlayer decreased the deformation of FTO substrate, improved electron transfer at the hematite/FTO interface and increased charge-transfer resistance at the electrolyte/hematite interface. This is the first systematic investigation of the effects of Zr passivation, shallow doping, and Sn doping on hematite nanorod photoanodes through application of a ZrO2 underlayer on the FTO substrate.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have