Abstract

This study proposed a framework (termed as “nanoHealthRisk” hereafter) for incorporating i) interaction of nanoparticles (NPs) with fishes, ii) availability of NPs to the human digestive system, and iii) estimation of health risk due to fish consumption and inadvertent ingestion of NP-contaminated surface water, for the first time as per the literature review. The framework was applied for estimating health risks due to hypothetical exposures of pristine ZnO, CuO, and TiO2 NPs (without any surface functionalization) from fish tissues. Values of bio- concentration factors (BCF) of ZnO, CuO, and TiO2 NPs in fish and model distributions of bio-assimilation factor of ZnO, CuO and TiO2 NPs in the human digestive system were incorporated explicitly in the risk assessment of NPs for the first time. ZnO NP was observed to be transferred more to the human digestive system from aqueous matrix than the other two NPs. Maximum allowable values of NP posing no risk were found to be 0.115 mg/L, 0.152 mg/L, and 1.77 × 107 mg/L for pristine ZnO, CuO and TiO2 NP, respectively. At the environmental concentration range, exposures of studied NPs from aquatic environment under the assumptions used did not pose any health risk under the conditions studied in this study. More work is required to (1) Estimate bio-concentration factors of a mixture of NPs with other constituents in fish tissues, (2) Estimate dissolution of NP from fish tissue in human digestive media, (3) Generate new data to develop reference dose of NP for human health risk assessment, and (4) Study effect of NP fate in the water on health risk through fish consumption pathway. Until all above-mentioned aspects are not explicitly incorporated in the risk assessment framework, risk estimates do not represent the risk from environment completely. Thus, continuous monitoring of these NPs in the environment is required to protect health due to chronic exposure of small concentrations of NPs from an aqueous matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.