Abstract

Vibrations induced by flow, generally referred to as vortex induced vibrations, are of great importance in the design of marine risers. These flexible cylindrical risers undergo vibrations of very high amplitude when the vortex shedding frequency matches the natural frequency of the riser. Such vibrations are capable of putting the safety of crew working on offshore platforms in question. Hence the prediction of response of such structures is considered very important. Although a lot of numerical work has been done in this field treating the problem as a two-way fluid structure interaction, the fact that these works demand very high computational efforts has not made it pertinent where high end computing resources are not readily available. A quick prediction of the structural response of such slender structures needs to be handy to the engineers at times of need. This paper addresses a solution technique for such a problem through an economical method for quick and reliable prediction of riser response under vortex induced vibration utilizing minimum computational effort for moderate Reynolds number (Re = 3 x 105). Two dimensional flow simulations are carried out using RANSE based CFD followed by the uniform mapping of hydrodynamic forces on to the three dimensional riser. The grid used for the numerical simulation has been well validated against wind-tunnel experimental results for Re= 5.3 x 104. Hydrodynamic forces corresponding to the first three harmonics of natural frequency of the riser have been used as input in the structural solver to analyse the response using finite element method. Trajectories of the cylinder in the first three modes of vibration have been obtained, a typical eight figure pattern which is characteristic for lock-in vibration. It is found that the method is quite effective in the quick computation of flow induced vibration problems for low and moderate Reynolds numbers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call