Abstract

The time series of the dynamic response of a slender marine structure was predicted in approximate sense using a truncated quadratic Volterra series. The wave-structure interaction system was identified using the NARX (Nonlinear Autoregressive with Exogenous Input) technique, and the network parameters were determined through supervised training using prepared datasets. The dataset used for network training was obtained by nonlinear finite element analysis of the slender marine structure under random ocean waves of white noise. The nonlinearities involved in the analysis were both large deformation of the structure under consideration and the quadratic term of the relative velocity between the water particle and structure in the Morison formula. The linear and quadratic frequency response functions of the given system were extracted using the multi-tone harmonic probing method and the time series of the response of the structure was predicted using the quadratic Volterra series. To check the applicability of the method, the response of a slender marine structure under a realistic ocean wave environment with a given significant wave height and modal period was predicted and compared with the nonlinear time domain simulation results. The predicted time series of the response of structure with quadratic Volterra series successfully captured the slowly varying response with reasonably good accuracy. This method can be used to predict the response of the slender offshore structure exposed to a Morison type load without relying on the computationally expensive time domain analysis, especially for screening purposes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call