Abstract

An efficient numerical procedure for solving mixed-integer optimal control (MIOPCON) problems is developed in this paper, which involves a decomposition strategy through a series of optimal control and mixed-integer linear programming (MILP) subproblems. The optimal control problem is defined by fully implicit differential-algebraic equations, which are substituted by discrete time implicit equations resulting from the integration of the system equations by an implicit Runge-Kutta method. The advantage of this approach is that the dual information necessary for the MILP master problem can be obtained directly from the adjoint variables of the optimal control primal problem. As a result the MIOPCON problem is solved only in the reduced space, enabling efficient application of the algorithm to problems described by large-scale differential algebraic equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.